Tutorial
Physical Layer
Data Link layer
Network Layer
Routing Algorithm
Transport Layer
Application Layer
Network Security
Misc
- Router
- OSI vs TCP/IP
- TCP vs UDP
- Transmission Control Protocol
- TCP port
- IPv4 vs IPv6
- ARP Packet Format
- ARP Table
- Working of ARP
- FTP Client
- FTP Commands
- FTP Server
- I2C Protocol
- Sliding Window Protocol
- SPI Protocol
- IP
- ARP Commands
- ARP
- Address Resolution Protocol
- ARP and its types
- TCP Retransmission
- CAN protocol
- HTTP Status Codes
- HTTP vs HTTPS
- RIP Protocol
- UDP Protocol
- ICMP Protocol
- MQTT protocol
- OSPF Protocol
- Stop and Wait Protocol
- IMAP Protocol
- POP Protocol
- CIFS
- DAS
- DIMM
- iSCSI
- NAS (Network Attached Storage)
- NFS
- NVMe
- SAN
- Border Gateway Protocol
- Go-Back-N ARQ
- RJ Cable
- Difference between Connection-Oriented and Connectionless Service
- CDMA vs. GSM
- What is MAC Address
- Modem vs. Router
- Switch Vs. Router
- USB 2.0 vs 3.0
- Difference between CSMA CA and CSMA CD
- Multiple access protocol- ALOHA, CSMA, CSMA/CA and CSMA/CD
- URI vs URL
- IMAP vs. POP3
- SSH Meaning| SSH Protocol
- UTP vs STP
- Status Code 400
- MIME Protocol
- IP address
- proxy server
- How to set up and use a proxy server
- network security
- WWW is based on which model
- Proxy Server List
- Fundamentals of Computer Networking
- IP Address Format and Table
- Bus topology and Ring topology
- Bus topology and Star topology
- Circuit Switching and Packet switching?
- Difference between star and ring topology
- Difference between Router and Bridge
- TCP Connection Termination
- Image Steganography
- Network Neutrality
- Onion Routing
- Adaptive security appliance (ASA) features
- Relabel-to-front Algorithm
- Types of Server Virtualization in Computer Network
- Access Lists (ACL)
- What is a proxy server and how does it work
- Digital Subscriber Line (DSL)
- Operating system based Virtualization
- Context based Access Control (CBAC)
- Cristian's Algorithm
- Service Set Identifier (SSID)
- Voice over Internet Protocol (VoIP)
- Challenge Response Authentication Mechanism (CRAM)
- Extended Access List
- Li-fi vs. Wi-fi
- Reflexive Access List
- Synchronous Optical Network (SONET)
- Wifi protected access (WPA)
- Wifi Protected Setup (WPS)
- Standard Access List
- Time Access List
- What is 3D Internet
- 4G Mobile Communication Technology
- Types of Wireless Transmission Media
- Best Computer Networking Courses
- Data Representation
- Network Criteria
- Classful vs Classless addressing
- Difference between BOOTP and RARP in Computer Networking
- What is AGP (Accelerated Graphics Port)
- Advantages and Disadvantages of Satellite Communication
- External IP Address
- Asynchronous Transfer Mode (ATM)
- Types of Authentication Protocols
- What is a CISCO Packet Tracer
- BOOTP work
- Subnetting in Computer Networks
- Mesh Topology Advantages and Disadvantages
- Ring Topology Advantages and Disadvantages
- Star Topology Advantages and Disadvantages
- Tree Topology Advantages and Disadvantages
- Zigbee Technology-The smart home protocol
- Network Layer in OSI Model
- Physical Layer in OSI Model
- Data Link Layer in OSI Model
- Internet explorer shortcut keys
- Network Layer Security | SSL Protocols
- Presentation Layer in OSI Model
- Session Layer in OSI Model
- SUBNET MASK
- Transport Layer Security | Secure Socket Layer (SSL) and SSL Architecture
- Functions, Advantages and Disadvantages of Network Layer
- Protocols in Noiseless and Noisy Channel
- Advantages and Disadvantages of Mesh Topology
- Cloud Networking - Managing and Optimizing Cloud-Based Networks
- Collision Domain and Broadcast Domain
- Count to Infinity Problem in Distance Vector Routing
- Difference Between Go-Back-N and Selective Repeat Protocol
- Difference between Stop and Wait, GoBackN, and Selective Repeat
- Network Function Virtualization (NFV): transforming Network Architecture with Virtualized Functions
- Network-Layer Security | IPSec Modes
- Next - Prev Network-Layer Security | IPSec Protocols and Services
- Ping vs Traceroute
- Software Defined Networking (SDN): Benefits and Challenges of Network Virtualization
- Software Defined Networking (SDN) vs. Network Function Virtualization (NFV)
- Virtual Circuits vs Datagram Networks
- BlueSmack Attack in Wireless Networks
- Bluesnarfing Attack in Wireless Networks
- Direct Sequence Spread Spectrum
- Warchalking in Wireless Networks
- WEP (Wired Equivalent Privacy)
- Wireless security encryption
- Wireless Security in an Enterprise
- Quantum Networking
- Network Automation
- Difference between MSS and MTU
- What is MTU
- Mesh Networks: A decentralized and Self-Organizing Approach to Networking
- What is Autonomous System
- What is MSS
- Cyber security & Software security
- Information security & Network security.
- Security Engineer & Security Architect
- Protection Methods for Network Security
- Trusted Systems in Network Security
- What are Authentication Tokens in Network security
- Cookies in Network Security
- Intruders in Network Security
- Network Security Toolkit (NST) in virtual box
- Pivoting-Moving Inside a Network
- Security Environment in Computer Networks
- Voice Biometric technique in Network Security
- Advantages and Disadvantages of Conventional Testing
- Difference between Kerberos and LDAP
- Cyber security and Information Security
- GraphQL Attacks and Security
- Application Layer in OSI Model
- Applications of Remote Sensing
- Seven Layers of IT Security
- What is Ad Hoc TCP
- What is Server Name Indication(SNI)
Relabel-to-front Algorithm
The relabel-to-front algorithm is employed to determine the network's maximum flow. The generic push-relabel approach is less effective than the relabel-to-front algorithm. The basic operations of push and relabel can be used in any order when using the push-relabel method. The relabel-to-front algorithm carefully selects the order and effectively controls the network data structures.
First, we must comprehend the fundamental operations, such as push and relabel:
The height variable (h) and excess flow are the 2 variables that are connected to each vertex in the network (e).
- Push: When a vertex has excess flow and an adjacent node in the residual graph has a lower height, we push the flow from the vertex to the node with the lower height.
- Relabel: When a vertex has too much flow and there are no nodes nearby that are lower in height, we use the relabel operation to make the vertex taller so that it can perform push operations.
The relabel-to-front algorithm keeps track of the network's vertices in a list. It repeatedly chooses an overflowing vertex u and executes a discharge operation on it, starting at the very beginning of the list.
Push and relabel operations are carried out during discharge operations up until vertex u has no positive excess flow (e)
In the event that a vertex is relabeled, the algorithm scans once more with the new vertex at the front of the list.
Algorithm:
- Set the preflow and heights to their respective initial values for the aforementioned generic push-relabel algorithm.
- Create list L from scratch, leaving out the sources and sinks.
- Set each vertex's current pointer to the first vertex in its neighbour list N. Those vertices for which a residual edgeexists are included in the neighbour list N.
- as list L's end is reached by the algorithm.
- Perform the discharge operation on the vertex u after choosing it from list L.
- Put you at the top of the list if you were relabeled due to discharge.
- The vertex in the following iteration is the one that follows u in its new position in the list if u was moved to the front of the list.
Example
- Consider the flow network as an example. The initial list L=(B, C) with initial value u=B is displayed on the right.
- following the initialization of the preflow. A neighbour list N with the current neighbour circled is located under each vertex in list L.
- Since Vertex B has an excess flow of 3 (e=3), a discharge operation is performed. Vertex B performs a relabel operation (h=1) and pushes flow 1 to vertex C because it lacks a node with a lower height.
- Vertex B performs a relabel operation (h=5) and pushes flow 2 to vertex A because it still has extra flow 2(e=2). Vertex B remains at the top of the list despite having its label changed. Now that vertex C has an excess flow of 1(e=1), it is discharged.
- Relabel operation (h=1) is carried out by vertex C, and flow 1 is pushed to node D. Vertex C is moved to the top of the list because it performed a relabel operation.
- Now, in L, vertex B follows vertex C, but B does not have an excess flow. Once it reaches theend of list L, the RELABEL-TO-FRONT comes to an end. Since there are no overflowing vertices, the preflow is at its highest level. Here, maximum flow is 1.
- Time Complexity: On network G, runs in O(V3) time (V, E). As a result, it performs better than the generic push-relabel algorithm, which takes O(V2E) time to complete.