Tutorial
Physical Layer
Data Link layer
Network Layer
Routing Algorithm
Transport Layer
Application Layer
Network Security
Misc
- Router
- OSI vs TCP/IP
- TCP vs UDP
- Transmission Control Protocol
- TCP port
- IPv4 vs IPv6
- ARP Packet Format
- ARP Table
- Working of ARP
- FTP Client
- FTP Commands
- FTP Server
- I2C Protocol
- Sliding Window Protocol
- SPI Protocol
- IP
- ARP Commands
- ARP
- Address Resolution Protocol
- ARP and its types
- TCP Retransmission
- CAN protocol
- HTTP Status Codes
- HTTP vs HTTPS
- RIP Protocol
- UDP Protocol
- ICMP Protocol
- MQTT protocol
- OSPF Protocol
- Stop and Wait Protocol
- IMAP Protocol
- POP Protocol
- CIFS
- DAS
- DIMM
- iSCSI
- NAS (Network Attached Storage)
- NFS
- NVMe
- SAN
- Border Gateway Protocol
- Go-Back-N ARQ
- RJ Cable
- Difference between Connection-Oriented and Connectionless Service
- CDMA vs. GSM
- What is MAC Address
- Modem vs. Router
- Switch Vs. Router
- USB 2.0 vs 3.0
- Difference between CSMA CA and CSMA CD
- Multiple access protocol- ALOHA, CSMA, CSMA/CA and CSMA/CD
- URI vs URL
- IMAP vs. POP3
- SSH Meaning| SSH Protocol
- UTP vs STP
- Status Code 400
- MIME Protocol
- IP address
- proxy server
- How to set up and use a proxy server
- network security
- WWW is based on which model
- Proxy Server List
- Fundamentals of Computer Networking
- IP Address Format and Table
- Bus topology and Ring topology
- Bus topology and Star topology
- Circuit Switching and Packet switching?
- Difference between star and ring topology
- Difference between Router and Bridge
- TCP Connection Termination
- Image Steganography
- Network Neutrality
- Onion Routing
- Adaptive security appliance (ASA) features
- Relabel-to-front Algorithm
- Types of Server Virtualization in Computer Network
- Access Lists (ACL)
- What is a proxy server and how does it work
- Digital Subscriber Line (DSL)
- Operating system based Virtualization
- Context based Access Control (CBAC)
- Cristian's Algorithm
- Service Set Identifier (SSID)
- Voice over Internet Protocol (VoIP)
- Challenge Response Authentication Mechanism (CRAM)
- Extended Access List
- Li-fi vs. Wi-fi
- Reflexive Access List
- Synchronous Optical Network (SONET)
- Wifi protected access (WPA)
- Wifi Protected Setup (WPS)
- Standard Access List
- Time Access List
- What is 3D Internet
- 4G Mobile Communication Technology
- Types of Wireless Transmission Media
- Best Computer Networking Courses
- Data Representation
- Network Criteria
- Classful vs Classless addressing
- Difference between BOOTP and RARP in Computer Networking
- What is AGP (Accelerated Graphics Port)
- Advantages and Disadvantages of Satellite Communication
- External IP Address
- Asynchronous Transfer Mode (ATM)
- Types of Authentication Protocols
- What is a CISCO Packet Tracer
- BOOTP work
- Subnetting in Computer Networks
- Mesh Topology Advantages and Disadvantages
- Ring Topology Advantages and Disadvantages
- Star Topology Advantages and Disadvantages
- Tree Topology Advantages and Disadvantages
- Zigbee Technology-The smart home protocol
- Network Layer in OSI Model
- Physical Layer in OSI Model
- Data Link Layer in OSI Model
- Internet explorer shortcut keys
- Network Layer Security | SSL Protocols
- Presentation Layer in OSI Model
- Session Layer in OSI Model
- SUBNET MASK
- Transport Layer Security | Secure Socket Layer (SSL) and SSL Architecture
- Functions, Advantages and Disadvantages of Network Layer
- Protocols in Noiseless and Noisy Channel
- Advantages and Disadvantages of Mesh Topology
- Cloud Networking - Managing and Optimizing Cloud-Based Networks
- Collision Domain and Broadcast Domain
- Count to Infinity Problem in Distance Vector Routing
- Difference Between Go-Back-N and Selective Repeat Protocol
- Difference between Stop and Wait, GoBackN, and Selective Repeat
- Network Function Virtualization (NFV): transforming Network Architecture with Virtualized Functions
- Network-Layer Security | IPSec Modes
- Next - Prev Network-Layer Security | IPSec Protocols and Services
- Ping vs Traceroute
- Software Defined Networking (SDN): Benefits and Challenges of Network Virtualization
- Software Defined Networking (SDN) vs. Network Function Virtualization (NFV)
- Virtual Circuits vs Datagram Networks
- BlueSmack Attack in Wireless Networks
- Bluesnarfing Attack in Wireless Networks
- Direct Sequence Spread Spectrum
- Warchalking in Wireless Networks
- WEP (Wired Equivalent Privacy)
- Wireless security encryption
- Wireless Security in an Enterprise
- Quantum Networking
- Network Automation
- Difference between MSS and MTU
- What is MTU
- Mesh Networks: A decentralized and Self-Organizing Approach to Networking
- What is Autonomous System
- What is MSS
- Cyber security & Software security
- Information security & Network security.
- Security Engineer & Security Architect
- Protection Methods for Network Security
- Trusted Systems in Network Security
- What are Authentication Tokens in Network security
- Cookies in Network Security
- Intruders in Network Security
- Network Security Toolkit (NST) in virtual box
- Pivoting-Moving Inside a Network
- Security Environment in Computer Networks
- Voice Biometric technique in Network Security
- Advantages and Disadvantages of Conventional Testing
- Difference between Kerberos and LDAP
- Cyber security and Information Security
- GraphQL Attacks and Security
- Application Layer in OSI Model
- Applications of Remote Sensing
- Seven Layers of IT Security
- What is Ad Hoc TCP
- What is Server Name Indication(SNI)
Data Representation
A network is a collection of different devices connected and capable of communicating. For example, a company's local network connects employees' computers and devices like printers and scanners. Employees will be able to share information using the network and also use the common printer/ scanner via the network. Data to be transferred or communicated from one device to another comes in various formats like audio, video, etc. This tutorial explains how different data types are represented in a computer and transferred in a network.
Different Data types in a computer network:
- Texts
- Numbers
- Images
- Videos
- Audios
Textual data:
Data in text format is represented using bit patterns (combinations of two binary bits - 0 and 1). Textual data is nothing but a string, and a string is a collection of characters. Each character is given a specific number according to an international standard called Unicode. The process of allocating numbers to characters is called "Coding," and these numbers are called "codes". Now, these codes are converted into binary bits to represent the textual data in a pattern of bits, and these bits are transferred as a stream via the network to other devices.
Unicode:
It is the universal standard of character encoding. It gives a unique code to almost all the characters in every language spoken in the world. It defines more than 1 40 000 characters. It even defined codes for emojis. The first 128 characters of Unicode point to ASCII characters. ASCII is yet another character encoding format, but it has only 128 codes to 128 characters. Hence, ASCII is a subset of Unicode.
File extensions:
.doc, .docx, .pdf, .txt, etc.
For example:
Word: H
Unicode representation: U+0048
2. Numerical data
Numbers are directly converted into binary patterns by dividing by 2 without any encoding. The numbers we want to transfer generally will be of the decimal number system- ( )10. We need to convert the numbers from ( )10 to a binary number system - ( )2 to get a bit stream.
Number formats:
Integers
Date
Boolean
Decimal
Fixed point
Floating point
Example:
Number: 780
Binary representation: 1100001100
3. Image
Image data is also transferred as a stream of bits like textual data. An image, also called a picture, is a collection of little elements called "Pixels". A single pixel is the smallest addressable element of a picture, and it is like a dot with a size of 1/96 inch/ 0.26 mm. The dimensions of an image are given by the number of pixels along the height of the image X Number of pixels along the width of the image.
Representation in a computer:
Grayscale images:
A black-and-white/ Grayscale image consists of white, black, and all the shades in between. It can be considered as just the varying intensity of the White color. The intensity of the white color in a pixel is given by numbers called "Pixel values". The pixel value in a Grayscale image can be in the range of 0 to 255, where 0 represents Black and 255 represents White, and all the numbers in the interval represent different shades. A matrix is created for the image with pixel values of all the pixels in the image. This matrix is called a "Channel".
Colored images:
Each pixel comprises three transistors representing three standard colors: Red, Green, and Blue (RGB), Yellow, Cyan, and Magenta (YCM). Any color known can be generated by using these three colors. Based on the intensity of a color in the pixel, three matrices/ channels for each color are generated.
Suppose there is a colored image, and three matrices are created for Red, Green, and Blue colors in each pixel in the image:
The first pixel's intensities of Red, Green and Blue colors are [141, 35, 31]. In this way, every pixel is analyzed and converted into binary bits
, and this bit stream is transferred to any other device in the network to communicate the image. N-bit streams are used to represent 2N possible colors. From 0 to 255, we can represent 256 shades of color with different 8-bit patterns.
For example, an image consists of only either black or white colors, only one bit will be enough to represent the pixels:
White - 1
Black - 0
File extensions:
.jpg, jpeg, .png, etc.
4. Audios
Transferring an audio signal is different from other formats. Audio is broadcasting recorded sound or music. An audio signal is generated as an analog wave, converted into digital format to be stored in a computer by representing the wave amplitude at moments in bits. Another parameter is the sample rate. It represents the number of samples or, in other words, samples saved.
The audio quality depends on the sampling rate and the bit rate. If more bits are used to represent the amplitudes in moments and more moments are captured accurately, we can save the audio with every detail accurately.
File extensions:
.mp3, .m4a, .WAV, .AAC, etc.
5. Videos
A video is a collection of frames; each frame is a picture with the same or different dimensions. These frames/ images are represented as matrices, as we discussed above. All the frames/ images are displayed continuously, one after the other, to show a video in movement. To represent a video, The computer will analyze data about the video like:
- FPS (Frames per second)
- Duration of the video
- Image resolution (Number of pixels Horizontally X Vertically)
- Bit depth (Number of bits required to represent a pixel -> number of colors)
A video is mostly combined with an audio component, like a film or a video game.
File extensions:
.mp4, .MOV, .AVI, etc.